ENO and WENO Schemes

نویسندگان

  • Y.-T. Zhang
  • C.-W. Shu
چکیده

The weighted essentially nonoscillatory (WENO) schemes, based on the successful essentially nonoscillatory (ENO) schemes with additional advantages, are a popular class of high-order accurate numerical methods for hyperbolic partial differential equations (PDEs) and other convection-dominated problems. The main advantage of such schemes is their capability to achieve arbitrarily high-order formal accuracy in smooth regions while maintaining stable, nonoscillatory and sharp discontinuity transitions. The schemes are thus especially suitable for problems containing both strong discontinuities and complex smooth solution structures. In this chapter, we review the basic formulation of ENO and WENO schemes, outline the main ideas in constructing the schemes and discuss several of recent developments in using the schemes to solve hyperbolic type PDE problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Implementation of Weighted ENO Schemes

or perhaps with a forcing term g(u, x, t) on the right-hand side. Here u 5 (u1 , ..., um), f 5 (f1 , ..., fd), x 5 (x1 , ..., xd) In this paper, we further analyze, test, modify, and improve the high order WENO (weighted essentially non-oscillatory) finite differand t . 0. ence schemes of Liu, Osher, and Chan. It was shown by Liu et al. WENO schemes are based on ENO (essentially nonthat WENO sc...

متن کامل

cient Implementation of Weighted ENO Schemes 1

In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) nite diierence schemes of Liu, Osher and Chan 9]. It was shown by Liu et al. that WENO schemes constructed from the r th order (in L 1 norm) ENO schemes are (r +1) th order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of...

متن کامل

Implementation of Weighted ENO Schemes 1

In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) nite di erence schemes of Liu, Osher and Chan [9]. It was shown by Liu et al. that WENO schemes constructed from the r order (in L norm) ENO schemes are (r+1) order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of minimiz...

متن کامل

Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations

We incorporate new high-order WENO-type reconstructions into Godunov-type central schemes for Hamilton–Jacobi equations. We study schemes that are obtained by combining the Kurganov–Noelle–Petrova flux with the weighted power ENO and the mapped WENO reconstructions. We also derive new variants of these reconstructions by composing the weighted power ENO and the mapped WENO reconstructions with ...

متن کامل

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017